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Abstract. It is shown that the line group formalism proposed is suitable to describe both commensurate
and incommensurate modulations. Symmetry groups of modulated crystal lattices can completely be char-
acterized by symmetry transformations existing in real space, without any application of the formalism
based on reciprocal space. As typical examples of the method elaborated, the fundamental invariance and
symmetry properties of spin density functions and the soliton lattice are determined.

PACS. 02.20.-a Group theory – 64.70.Rh Commensurate-incommensurate transitions – 75.40.Cx Static
properties (order parameter, static susceptibility, heat capacities, critical exponents, etc.)

Introduction

As numerous former studies show [1–3], different kinds
of geometrical groups, namely point groups, line groups
and space groups can play a distinguished role in the de-
scription of symmetry properties of the solid states. In the
general case of magnetic structures the geometrical groups
have to be generalized [4] to involve the requirement of
time reversal symmetry, too [5]. The exact symmetry the-
ory of quasi-one-dimensional (Q1D) systems [6,7] provides
powerful methods for the analysis of condensed matter by
using irreducible representations (irreps) of the symmetry
groups [8–10], which are generally line groups.

These methods can be employed in the research of Q1D
subsystems of real crystals [11,12], polymers [13], modu-
lated systems [14,15] especially non-collinear magnetic su-
perstructures [16] and special materials, e.g. high-Tc su-
perconductors [17–19] having ordered or other superstruc-
tural units in their structures.

One of our earlier papers was dealing with the problem
of the translational symmetry of modulated crystals [12].
When finding the line groups to characterize the actual
symmetry groups of given materials, the relation for struc-
ture factors of polymers can be extended to describe the
modulation. In the case of K2SeO−4 and MnAu2 type ma-
terials the characteristic line group invariants were shown
to be just the translational invariants.

Another research [20] was devoted to the modelling of
the oxygen ordering in Y1Ba2Cu3O7−δ high temperature
superconductors by the line group method. The result of
this symmetry analysis reflects all the possible types of
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oxygen ordering which can appear in the solid state sys-
tem under investigation. The line group-epikernel tech-
nique led to the possible supersymmetries of the oxygen
ordering as L(4)/2c, L(4)/2m, L2/mmm and L2/mcc. In
this symmetry analysis the c-axis of the orthorhombic
Y1Ba2Cu3O7−δ was chosen as the main one of the sys-
tem described by line group formalism. It makes possible
to calculate directly the (0,0,1) type superlattice diffuse
scattering curves. The method of the determination of
Fourier coefficients was similar to the structure analysis
of polymers, giving algorithms to approach the experi-
mental curves of whatever kind of supersymmetry. The
results obtained provided the possibility for comparison
of theoretical and experimental intensity profiles, leading
to a good agreement between them.

In a later paper [15] line groups were proposed to
describe the symmetry properties of systems with non-
collinear magnetic structure. A general method was elab-
orated to obtain the irreducible representation of the sym-
metry groups of modulated crystals by using that of the
line groups. As a demonstrative example, the structural
phase transition leading to the modulated magnetic su-
perstructure in MnAu2 type compounds was analyzed by
the employment of the line group technique. It was shown
that the Dzyaloshinskii invariant is the most general one
according to symmetry properties of the order parameter
space investigated.

Although the Dzyaloshinskii’s theory [16,21,22] gives
a possibility for describing each important physical prop-
erty of modulated magnetic crystals, there is no symme-
try theory, which can completely describe these types of
structures. It means, that no symmetry groups exist, the
symmetry transformations of which act in the real space
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only and are able to reflect exactly the structure of mod-
ulated crystals.

The present paper intends to prove that the applica-
tion of line groups gives a possibility to construct such a
kind of symmetry theory. It will be shown, that symme-
tries of ideal as well as modulated crystals can be given
generally in the form

G = S⊗ L (1)

where G is a space group, S is a plane group and L is
a line group, which may have both crystallographic (for
ideal crystals) or non-crystallographic character (for mod-
ulated crystals). The formalism based on the fundamental
formula (1) is consistent with Dzyaloshinskii’s theory, but
its scope is more general.

Calculation technique

According to the general interpretation, the line group L
represents a regular arrangement of identical motifs in a
given direction. In such a way it contains all the symmetry
elements, which are responsible to preserve the Q1D sys-
tem to be invariant along the direction indicated. Corre-
sponding to this, the line group is generally the symmetry
group of the systems of Q1D geometrical character, thus
it can characterize 3D systems of translational invariance
in at least one direction. The line group theory is able to
provide information on both symmetry transformations of
crystallographic and non-crystallographic character, too.
Each line group L is built up from two different subgroups,
namely Z, which characterizes the generalized translations
and P, which describes the rotations (and/or the reflec-
tions), respectively. Therefore, each line group is given as
a product of

L = Z ? P; ? ∈ {·,∧,⊗}, (2)

where the symbols ·, ∧, ⊗ denote the weak-direct, semi-
direct and direct product of the constitutive groups, re-
spectively [3]. Having all the possible factorizations, the
irreps can be built for every line group family. Knowing
irreps D(ν) = D(ν)(P) of the isogonal point group P of a
line group the irreps of the line group can be constructed
by an induction technique [23] used in the case of ideal 3D
crystals, too, i.e.

D(µ)(L) = D(ν)(P) ↑ L. (3)

As is known [22,24] modulated crystal structures are
described by the so-called non-Lifshitz type stars in the
form of

k = k0 + δk (4)

in which the vectors k0 refer to highly symmetric points
in the first Brillouin zone and the vectors δk realize the
modulation.

The concept of translation can be generalized in the
line group theory by the following way. Instead of usual

translations composed from the integer linear combina-
tions of some three non-coplanar elementary translational
vectors (i.e. which originate from the Bravais-lattice) we
have the following extension of these pure translational
symmetry transformations:

(E|t)⇒ (Rν |ν + T); ν = νe, e =
T

|T|
, ν ∈ [0, 1) (5)

i.e. the elementary non-symmorphic symmetry transfor-
mations are the most general translation operations. Al-
though we can deal with these generalized translations
in the usual 3D crystal space too, we would restrict the
number of linearly independent vectors of the Bravais-
lattice from three to one, simply because we need only
the integer (“pure”) translations along the main direc-
tion of the Q1D system. The choice of the translational
subgroup determines the algebraic structure of the full
line group [2]. The integer translations T ≡ Ta appear-
ing in the group of generalized translations should not
be confused with the elements t of Bravais lattice of the
3D crystal. They are identical only in the trivial case
when the modulation is absent or is reduced to the ap-
pearance of orthogonal symmetry transformations with
“non-crystallographic” character. The groups of general-
ized translations are infinite cyclic groups, generated by
the elementary non-symmorphic symmetry elements of an
arbitrary order corresponding to Seitz-operators [4]. In
particular, the irreps for group nr can be determined by
a simple method [8]. As usual, for the cyclic group Cn we
have

g≡Csn⇒Am(Csn)=eimsα; 0 ≤ s ≤ n− 1; α =
2π

n
(6)

and so the irreps for the full line group Lnp are

kAm(Csn|Fr(sp/n) + T ) ≡ eimsαeik[Fr(sp/n)+T ]a, (7)

where Fr(y) denotes the fractional part of y, and thus it
represents the fractional translations ν ≡ Fr(sp/n). There-
fore, the irreps of the elements (E|ν + T) can always be
separated from the orthogonal part, independently of the
algebraic nature of the factorization we used.

In order to describe briefly the general algorithm for
constructing irreducible representation of product groups,
the Hamermesh’s idea [1] will be followed. Let a group
G be the direct product of its subgroups H and K, the
irreducible representations of which are known as

G = H⊗K; D(µ) = D(µ)(H),

D(ν) = D(ν)(K); dim{D(µ)} = nµ, dim{D(ν)} = nν . (8)

The irreducible representations are realized over irre-
ducible vector spaces V(µ) and V(ν) with the bases given
by the following sets of functions

B(V(µ)) = {ψ(µ)
1 , ψ

(µ)
2 , ..., ψ(µ)

nµ },

B(V(ν)) = {ψ
(ν)
1 , ψ

(ν)
2 , ..., ψ(ν)

nν }. (9)



I. Kirschner et al.: Line group theory of commensurate and incommensurate modulations 193

The symmetry operator of the constitutive subgroups act-
ing on the relevant irreducible subspaces is

h ∈ H⇒ D̂(h)ψ
(µ)
i =

∑
k

ψ
(µ)
k D

(µ)
ki (h);

k ∈ K⇒ D̂(k)ψ
(ν)
j =

∑
l

ψ
(ν)
l D

(ν)
lj (k), (10)

which implies that in the vector space obtained by direct
product of subspaces V(µ) and V(µ) the symmetry opera-
tor corresponding to a general group element of G acts as
follows:

D̂(g = hk){ψ(µ)
i ψ

(ν)
j } = {D̂(h)ψ

(µ)
i {D̂(k)ψ

(ν)
j }

=
∑
k,l

ψ
(µ)
k ψ

(ν)
l D

(µ)
ki (h)D

(ν)
lj (k). (11)

It means, that each group element of G is obtained by the
direct product representation D(µ)⊗(ν)(G) = D(µ)(K) ⊗
D(ν)(H) with matrix elements

D
[(µ)⊗(ν)]
kl,ij (hk) = D

(µ)
ki (h)D

(ν)
ij (k). (12)

Description of commensurate and incommen-
surate modulations

Taking into account the general type of simple spiral (SS)
structures, the line group method used in this paper is
shown to be able to describe both commensurate and
incommensurate modulations. This statement is demon-
strated by the analysis of the invariance properties of spin
density functions and soliton lattices.

Invariance properties of the spin density functions

Under the commensurate modulation we mean that the
elementary period of the ordinary Bravais lattice divided
by the elementary period of the superlattice is a rational
number, while in the case of the incommensurate mod-
ulation the elementary translations of the two mentioned
subsystems are related to each other by an irrational num-
ber. Let us specify a translation tm ≡ ma1 of the Bravais-
lattice of the ordinary 3D crystal, which is parallel to a
translation Tl + ν ≡ la2 + z

n
a2 of the line group related

to the superstructure and calculate their difference. The
result obtained is

tm −Tl − ν ≡ ma1 − la2 −
z

n
a2

= pa2 +
w

s

a

n
−
z

n
a2 = pa2 +

w − zs

ns
a2 ≡ Tp + ν′ (13)

where p is an integer and w/s < n. It is obvious that the
number w can possess both rational and irrational values.
This simple formula presents a useful tool for examining
the transformation properties of the spin density functions
in the case of modulated structure.

If S(r) denotes the conventional spin density function
and f(r) the modulation function, the structure factor of
one-dimensionally modulated system can be written [15]
in the form

Fmod(κ) = F{f(r) ∗ S(r)} = F{f(r)}F (κ), (14)

where * marks the convolution operation, κ is the scat-
tering vector and the scattering amplitude

F (κ) = F{S(r)} (15)

corresponds to the ordinary structures. The function f(r)
has to be invariant against the symmetry transformation
of the given supersymmetry to which a characteristic line
group belongs. Applying this consideration to some kind
of magnetic interactions, it is seen that the scattering am-
plitude depends directly on the line group invariant spin
density function

D̂(g1)S(r) = S(r); g1 ∈ L. (16)

The functionals (14-16) can immediately be introduced
into the relevant expression for the magnetic elastic scat-
tering cross-section [22]:

dσM

dΩ
= (r0γ)2{|F(κ)|2 − |eF(κ)|2}, (17)

where e is the scattering unit vector. The atomic spin for
the SS structures in the zeroth unit cell has the position

Sk
0 =

1

2
S0(m1 + im2), (18)

where k, m1 and m2 are mutually orthogonal vectors.
In order to prove our statement in this case, we start

from the most simple spin density function (with only one
atom carrying nonzero spin in the motif)

Sk
n = Sk

0 eiktn + Sk∗
0 e−iktn , (19)

which can be written with δk in the following form:

Sk
n = S0{m1 cos[(δk)tn ]−m2 sin[(δk)tn ]} (20)

separating the function by using the bases of

B1 = {m1,m2}; B2 = {cos[(δk)tn ], sin[(δk)tn]}. (21)

Since the adequate line group Lnp has the subgroup struc-
ture of Lnp = qr ⊗ Cn, it can be represented by matrices
built up in the form of a Kronecker-product

gl ∈ Lnp ⇒ D(µ)(gl) ≡ D(µ)(Q|νR + T)

= D(ν)(Cs
n|0)⊗D(λ)(R|νR + T). (22)

Considering that the constitutive subgroups of Lnp are
commutative groups whose irreps are one dimensional,
and an algebraically convenient subgroup structure of this
group, we may perform the following transcription of the
irrep (22) as

D(µ)(Q|νR + T) = D(ν)⊗(κ)(CsnR)eik(νR+T )a, (23)
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where D(κ) denotes the irrep of the orthogonal part of
the Seitz-generator of the subgroup of generalized trans-
lations. The elements (being axial vectors) of the basis B1

transform according to the pseudovectorial representation
[1,22] and the elementary rotational transformations with
respect to D(ν)⊗(κ)(CsnR) can be left. Let us consider the
action of the symmetry operator from the group of gener-
alized translations on the basis functions:

D̂(νR + T) cos[(δk)tn] = cos[(δk)(Tp − ν
′)]

= D̂(ν ′) cos[(δk)Tp] (24)

D̂(νR + T) sin[(δk)tn] = sin[(δk)(Tp − ν
′)]

= D̂(ν ′) sin[(δk)Tp]. (25)

In these equations we used the given line group property
(21) and separated the fractional translations from the
integer ones and reduced the problem to the examination
of the action of the operators of fractional translations on
the basis functions. Then, from (24,25) the relations

D̂(ν ′) cos[(δk)Tp] = cos[(δk)Tp] cos[(δk)ν′a)]

+ sin[(δk)Tp] sin[(δk)ν′a] (26)

D̂(ν ′) sin[(δk)Tp] = sin[(δk)Tp] cos[(δk)ν′a2)]

− cos[(δk)Tp] sin[(δk)ν′a2] (27)

can be got. If two strictly fractional translations are taken
from the relevant line group (e.g. (E|ν1),(E|ν2); ν1, ν2 ∈
[0, 1)) which also generate two strictly fractional trans-
lations ν′ and ν′′ and supposing that their sum does not
exceed the elementary integer translation of the line group
of the examined superstructure, these lead to the results

D̂(ν′)D̂(ν ′′) cos[(δk)Tp] = cos[(δk)Tp]

× cos[(δk)(ν′+ν′′)a]+sin[(δk)Tp] sin[(δk)(ν′+ν′′)a]
(28)

D̂(ν′)D̂(ν ′′) sin[(δk)Tp] = sin[(δk)Tp]

× cos[(δk)(ν′+ν′′)a2]−cos[(δk)Tp] sin[(δk)(ν′+ν′′)a2].
(29)

These equations show immediately that the requirement
of the homomorphism is really satisfied, i.e.

D(ν ′ + ν ′′) = D̂(ν ′)D̂(ν ′′) (30)

implying directly that

D(ν1)D̂(ν2) = D̂(ν1 + ν2). (31)

In the case, when the sum of the fractional translations
generated by (13) exceeds the elementary integer transla-
tion of the line group, we have

ν ′ + ν′′ = a2 + ν′′′ (32)

and so from (28,29) the relations

D̂(ν ′ + ν′′) cos[(δk)Tp] = cos[(δk)ν′′′a] cos[(δk)(Tp − a)]

+ sin[(δk)ν′′′a] sin[(δk)(Tp − a)] (33)

D̂(ν ′ + ν′′) sin[(δk)Tp] = cos[(δk)ν′′′a] sin[(δk)(Tp − a)]

− sin[(δk)ν′′′a] cos[(δk)(Tp − a)] (34)

follow and one can perform again the complete procedure
to prove the homomorphism for the case (32), too.

Therefore each non-colinear SS-type magnetic struc-
ture can be connected exactly with line groups of the sim-
plest family Lnp, independently of the commensurate or
incommensurate character of the modulation.

Invariance properties of the soliton lattice

As some earlier results show [20], the static soliton lat-
tice characterizes the structures consisting of commensu-
rate domains separated by thin incommensurate domain
boundaries. Let the unmodulated electron density func-
tion be invariant with respect to symmetry transforma-
tions from the space group of the crystal

ρ(r) = ρ(r−Rnγ) (35)

where the index n counts the elementary cells and the
index γ counts the scattering centres inside the unit cell.

In the case of a modulation the scattering centres are
displaced from their ideal places by unγ and the modu-
lated electron density function has a form of

ρ(r−Rnγ)⇒ %(r−Rnγ − unγ) ≡ ρ1(r− unγ) (36)

and so, we can employ the Fourier expansion of series

ρ1(r) =
∑
k

ρ1ke2πikre−2πikunγ

≈
∑
k

ρ1ke2πikr − 2πi
∑
k

kunγρ1ke2πikr. (37)

Using the Fourier expansion of the function kunγ , we have
the following simplified form of the new, “modulated”
electron density function in the given approximation as

ρ1(r) =
∑
k

ρ1ke2πikr − 2πi
∑
k

∑
h

ρ1kTh,ke2πi(k+h)r.

(38)

Therefore, the amplitude of the X-rays scattered in the di-
rection k can be obtained by the following Fourier trans-
form

A(κ) = F{ρ(r− unγ)} =
∑
k

ρ1kδ(κ− k)

− 2πi
∑
k

∑
h

ρ1kTh,kδ(κ− k− h), (39)

i.e. the main Bragg reflections are determined by the equa-
tion κ = k while the satellite reflections are centered
around k and situated at κ = k + h.

Properties of the modulated electron density function
can also be examined by line group symmetry transforma-
tions, i.e. we examine the effect of the symmetry operator
D̂(gl) on ρ1(r), gl ∈ Lnp by applying the line group tech-
nique for the description of this incommensurate modula-
tion. If the displacement function can be written as

unγ = uγeiΦ(z) = uγei(Φ0+2πmp ), (40)
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then it is assumed to be corresponding to a line group
invariant function

gl ∈ L⇒ D̂(gl)unγ = unγ , (41)

which can be decomposed by using again the direct prod-
uct of the given line groups and the rules for the irreducible
representations of the product groups. The product of the
symmetry operators is

{D̂[(Csn|0)uγ ]}{D̂[(R|νR + T)]eiΦ(z)}, (42)

i.e. the amplitude vector uγ is invariant with respect to
the transformations of the cyclic group Cn, and the phase
function eiΦ(z) according to the transformations of the
subgroup of generalized translations qr. Due to the prop-
erties of the polar-vectorial and axial-vectorial (or: pseu-
dovectorial) representations, we do not perform here the
calculations concerning the first part of the product (40),
but limit ourselves to the second factor only. Specifying
νR = m

p
a, the calculation can be realized in the form

D̂[(R|νR + T)]ei(Φ0+2πmp ) = eiΦ0D̂[(R|νR + T)]ei2π
m
p

≡ eiΦ0D̂[(R|νR + T)]e2πi(ed,
m
p a)

= eiΦ0e2πi(ed,(R
−1|−R−1νR)mp a)e−2πi(ed,R

−1T), (43)

where the last exponential factor is equal to unity, because
the rotational operation on a line group does not change
the vectors of its integer translations, but may reverse
their directions. The consideration leads to

D̂[(R|νR + T)]ei(Φ0+2πmp ) = eiΦ0e2πi(ed,R
−1m−k

p a)

= eiΦ0e2π(Red,
m
p a)e−2πi(Red,

k
pa)

= eiΦ0e2πi(ed,
m
p a)e−2πi(ed,

k
pa) ≡ ei(Φ+2πmp )e−2πi kp , (44)

i.e. the displacement function is a genuine line group in-
variant function at least in the sense of projective rep-
resentations, where the unit vector of the direct space is
denoted by ed. The last equation before the identity is
valid because the point group relationships are identical
in the real space of the crystal and its dual space, i.e. the
symmetry operation R may at most reverse the direction
of ed but not change its direction.

Finally, we prove the homomorphism for the case of
soliton lattices, too. The result of the symmetry operation
of a line group on the modulated electron density function
is

D̂(Q|νR + T)ρ1(r− unγ) =
∑
k

ρ1Qk(T)e2πi(Qk,r−unγ )

(45)

where we defined the modified Fourier-coefficients (i.e.
structure factors corresponding to the modulation) by the
formula

ρ1Qk(T) = ρ1ke−2πi(Qk,νR+T). (46)

Since in general the isogonal point group of the line group
differs from the point group of the crystal being modu-
lated, the action of Q on the vector k results in a new
reciprocal-space vector, which can be expressed as

Qk = k + δk. (47)

This is a relation of crucial importance, because it con-
nects to an orthogonal symmetry operation of the isogo-
nal point group of a line group with the modulation. Us-
ing this formula, it is possible to prescribe the exponential
factor as

e−2πi(Qk,νR+T) = e−2πi(k+δk,νR+T)

= e−2πi(k+δk′,md), (48)

i.e. we used the vector d from the direct lattice in order
to explain the modulation δk′ which can be registrated
in the scattering experiments. The homomorphism can be
proven by the application of two line group symmetry op-
erators on the same electron density function

D̂[(P |ν1 + T1)]D̂[Q|ν2 + T2)]ρ1(r − unγ)

= D̂[(PQ|ν1 + T1 + Pν2 + PT2)]ρ1(r− unγ)

=
∑
k

ρ1PQk(T1 + T2)e2πi(PQk,r−unγ) (49)

with transformed structure factors in the following form
of

ρ1PQk(T1 + T2) = ρ1ke−2πi(PQk,ν1+T1+Pν2+PT2). (50)

The same result must be obtained by succesive application
of the symmetry operators:

D̂[(P |ν1 + T1)]D̂[(Q|ν2 + T2)]ρ1(r− unγ)

= D̂[(P |ν1 + T1)]
∑
k

ρ1Qk(T2)e2πi(Qk,r−unγ)

=
∑
k

ρ1Qk(T2)D̂[(P |ν1 + T1)]e2πi(Qk,r−unγ)

=
∑
k

ρ1Qk(T2)e2πi(Qk,(P |ν1+T1)−1(r−unγ))

=
∑
k

ρ1Qk(T2)e2πi(Qk,P−1(r−unγ−ν1−T1))

=
∑
k

ρ1Qk(T2)e2πi(PQk,r−unγ)e−2πi(PQk,ν1+T2). (51)

The Fourier coefficients are also the same as in the case
of equation (45), which are demonstrated in the next re-
lations

ρ1Qk(T2)e−2πi(PQk,ν1+T1) ≡ ρ1ke−2πi(Qk,ν1+T2)

× e−2πi(PQk,ν1+T1) = ρ1ke−2πi(P−1PQk,ν2+T2)

× e−2πi(PQk,ν1+T1) = ρ1ke−2πi(PQk,P (ν2+T2))

× e−2πi(PQk,ν1+T1) = ρ1ke−2πi(PQk,Pν2+PT2+ν1+T1)

(52)

showing obviously their identity.
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Conclusions

1. As is shown, the formalism developed is suitable to char-
acterize both commensurate and incommensurate modu-
lations. On the basis of this experience, the main advan-
tage of the method discussed above is its validity when
describing phase transitions independently of their com-
mensurate or incommensurate character.
2. The new formula (46) obtained for the structure am-
plitude of X-ray scattering may be used for further devel-
opment of the general formalism needed for the structural
analysis of modulated crystals.
3. The results obtained concerning the symmetry proper-
ties of the Q1D subsystems of 3D systems may be applied
in the examination of different properties of charge den-
sity waves (CDW) and spin density waves (SDW) [25] too.
The selection rules based on the employment of the irreps
of line groups would be especially useful in the investiga-
tion of the dynamics of CDW-s and SDW-s. Therefore,
the research of these problems represents prospective di-
rections of the application of line group technique, elabo-
rated above.
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